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ABSTRACT

A new scheme of advecting tracers by general circulation .
model winds is presented. Within each model grid box, the
scheme calculates the mean concentration, and, in addition,
the linear slope of concentration for the east-west, north-
south, and vertical directions. This slopes scheme yields
much smoother and thus more realistic tracer distributions
than either second or fourth order schemes, and it is rela-
tively non-diffusive. The upstream scheme and the three al-
ready mentioned schemes are compared in one and two dimen-
sions with constant winds. In three dimensions, five month

simulations of carbon monoxide with model predicted winds are

shown.



INTRODUCTION

The general circulation climate model under development
at the Goddard Institute for Space Studies has the ability
to carry four ‘'tracers' on-line. The tracers are quantities
which are advected by the winds, mixed by convection, and
changed by calculated sources and sinks, but do not affect
the model's simulated climate. We can also save, on a com-
puter tape, the monthly mixing by convection, and, every six
hours, the time averaged winds over that interval. In that way
we can make several tests of the tracer part of the model
without recomputing the whole model. Normally we run the

tracers in this off-line mode.

The purpose of this paper is to examine several advection
. schemes for tracers to be used in conjunction with the winds

generated by our three dimensional climate model.



THE WELL KNOWN SCHEMES

At first we considered three well known advective schemes:
the upstream scheme, the second order scheme, and the fourth
order scheme. The first two schemes are described in Figures
1 and 2. The fourth order scheme does not lend itself to a
similar schematic figure. But using the same definitions as
those used in Figure 1, the fourth order scheme (in one dimen-
sion) calculates the mean concentration of grid box i at the

end of a time step as

[R, + a(-R, _+7R,
1 i-2

+ - 12 - B (-
o1 *TRy R ,)/12 = B(-R,

+7R.+ - -
1 7Ri 7Ri+l Ri+2)/12]/(1+a R).

We should note that in all our tests, the mass flux of air
crossing an interface is predetermined. The current version
- of our general circulation model, which generates the

mass fluxes for our three dimensional tests, uses second

order differencing.

The deficiencies of each of these schemes are well known.
The upstream scheme is highly diffusive. While the second and
fourth order schemes are inherently non-diffusive, negative
concentrations occur with both, and adjustments to prevent
these negative concentrations cause diffusion. The second
order scheme does not advect the peak concentratioh as well
as do the other schemes. In three dimensions, both the second
and fourth order schemes create a noisy pattern with unrealis-

tic gradients.



THE SLOPES SCHEME

The slopes scheme is basically an upstream scheme but
uses, for each grid box, the mean concentration and the linear
slope of concentration for the east-west, north-south, and
vertical directions. In each dimension, the distribution with-
in a grid box plus the distribution of the incoming air minus
that of the outgoing air during a time step are fitted by the
roct mean square line to determine the linear distribution of
concentration for the next step. Figure 3 describes the
slopes scheme in one dimension, but that prescription is
applied to all three dimensions.

The non-diffusive character of the scheme and its ability
to advect tracer distributions accurately will be obvious

from our several tests.



PREVENTING NEGATIVE CONCENTRATIONS

Starting from a non-uniform tracer distribution, it is
possible that numerical schemes will cause negative concen-
trations. There are several different reasons for such

occurrernces.

Negative concentrations can result if the mass of air
leaving several faces of a grid box during a time step ex-
ceeds the mass of air in the box. (Although there will be air
entering the grid box through other faces, the tracer concen-
tration of the incoming air may be insignificant). The small
time step required when dynamically integrating a GCM prevents
this problem from occurring when a tracer is run on-line.
However, when a tracer is run off-line, one typically uses a
longer time step. In the upstream and slopes schemes we limit
the mass of air leaving any face of a grid box during a time
step to 1/2 the mass of air in the box. That limit effec-

tively eliminates negative concentrations.

The second and fourth order schemes require a more strin-
gent test. Even if the mass of air leaving one face of a grid
box is small, it could take with it a large mass of tracer,
leaving a deficit in the box. One way to prevent this is the
'£filling' method of 'downstream borrowing' (Mahlman [1]).

We, however, use a simpler calculation wherein the mass of
tracer leaving any face of a grid box during a time step is

limited to 1/2 of the current mass of tracer in the box.



Since we advect separately in the three dimensions, our limit

prevents negative concentrations.

We should note that the 'downstream borrowing' method as
used by Mahlman [l] would be invoked less often than our
method, and consequently would have less numerical distortion.
However, based on tests we have run with Mahlman's formulation
in our one dimensional model, we believe the differences should

be insignificant.

The final source of negative concentrations applies to
the slopes scheme only. If the magnitude of the slope in
any direction is sufficiently large, it is possible to have
negative concentrations near the faces of a grid box. This
can cause mean concentrations in neighbéring boxes to become
negative. To prevent this, we limit the magnitude of each
slope so that the concentration at any face is greater

than zero and less than two times the mean concentration.

Table I shows the frequencies at which these limits are
invoked for the fifth month of our three dimensional tests.
They are global numbers in percent, and are of course time
step dependent. Except for the slopes limit, the east-west

frequencies generally increase with latitude.



TIME STEPS

The second and fourth order schemes use leap frog time-
stepping. The leap frog is started by a single forward ex-
plicit step. In the two and three dimensional tests, we stop
the leap frog at regular intervals and then restart it with
a single forward step. For the upstream and slopes scheme,
leap frog is unnecessary. Hence, they use forward explicit

steps only.



TESTS IN ONE DIMENSION

Our one dimensional model uses 36 grid boxes around a
circle with all boxes having equal mass and equal length Ax.
The wind speed u is constant in space and time, and the time
step At is constant in time. The only essential parameter
is y = u At/Ax which is dimensionless. For all the tests
shown, y = 1/8. For smaller vy, all the schemes are essen-
tially unchanged. For larger vy, the upstream and slopes
schemes have slight improvements whereas the second and fourth
order schemes are degraded because of our limits imposed to
avoid negative concentrations. The initial tracet distribu-
tion is a wedge (see Figure 4) which has been used by several
authors, e.g. Mahlman and Sinclair [2]. For the slopes
scheme, the initial slopes must also be specified; we set them

to zero.

The results of advecting the wedge around the circle five
times with each of the four schemes are shown in Figure 5.
A perfect scheme would keep the wedge intact. 1In the compu-
tations for Figures 5 and 6 we use our stated limits to pre-
vent negative concentrations. It is clear that the upstream
scheme is highly diffusive. The second order scheme misplaces
and rounds off the peak. Both the fourth order and slopes

schemes advect the wedge rather accurately.

Figure 6 shows the tracer distributions produced by the
four schemes after advecting the initial distribution £fifty
times around the circle. With the upstream scheme,
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the tracer distribution has become uniform. The second order
scheme is also diffusive and its peak is, of course, misplaced.
The fourth order scheme has some diffusion, a secondary maxi-
mum, and its peak is slightly off center. The slopes scheme
is still accurately advecting the wedge but some diffusion

has crept in.

We have also tested the schemes without imposing our
limits, . thus allowing negative concentrations. Figure 7 shows
the results after fifty revolutions. For the upstream scheme,
Figures 6 and 7 are identical. The second order scheme yields
a meaningless distribution. The magnitude.of the peak is
good with the fourth order scheme, butits location is slightly
misplaced and the scheme has secondary maxima and minima.

The slopes scheme is very smooth and its peak is positioned
. correctly, but its magnitude is less than that of the fourth

order scheme.

With each of the schemes, the mass of tracer is

. . . 36
conserved with time, 1.e., E =1 Ri = 50. We also calculate
l.‘—_'
the R2 nerm, iil Ri , as a function of time. It measures

the amount of diffusion for a given scheme. For a perfectly
non—diffusive scheme the R2 norm would remain constant. Figure
8 shows the R2 norm for the four schemes using our stated
limits to prevent negative concentrations. The slopes scheme
has a quick decrease because the initial slopes were set to
.zero. With no limits, the R2 norm for the upstream scheme

would be unchanged, for the second and fourth order schemes
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the.R2 norm would be constant at 340, and for the slopes
scheme it would be somewhat greater than it is in Figure 8,

reaching a value of 254 after 30 revolutions.



TESTS IN TWO DIMENSIONS

The two dimensional model uses the same idea as that of
our one dimensional model. A reéular latitude-longitude map
divides up the surface of a sphere into 36 grid boxes from
west to east and 24 grid boxes from north to south. The 36
grid boxes adjoining a pole are merged into a single grid box.
The constant winds are specifed so as to rotate air around
a fixed axis with a constant angular velocity. The winds are

defined at the corners of the grid boxes.

An ideal scheme would keep the initial tracer-distribu—
tion intact and unchanged after many revolutions; In reality
this cannot happen because of errors in the scheme and because
of the finite mesh at which the wind points are defined:
ﬂcertain_grid boxes are constantly accumulating air and other
are losing.air.v To correct this éroblem, the_concentration
at the beginning of a time step is set equal to the concentra-
tion at the end of the previous step, but air is redistributed
so that it is proportional to the area of each grid box. This
readjustment should not affect the relative performance of the

different schemes.

For the upstream and slopes schemes, the time step is
1/432 of a full revolution. Muitiplying by the number of
grid boxes in the east-west direction gives 1/12, which com-
pares with Y = l/8 in the one dimensional tests. The second
and fourth order schemes use a time step of 1/1728 of a full
revolution; or 1/48 per grid box. The smaller time step
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reduces the frequency of invoking our limits preventing nega-.
tive concentrations. All schemes for the two dimensional

tests use the limits described above.

The initial tracer distribution for our two dimensional
tests is shown in Figure 9. The symbols used to specify the
concentration within the 24 by 36 matrix of grid boxes

use a logarithmic base 2 scale:

0=0 -1 7 =64 > 128 E = 81922 ~ 16384
1=1 -2 8 = 128 - 256 F = 16384 ~ 32768
2 =2 +4 9 = 256 - 512 G = 32768 > 65536
3=4 -8 A =512 > 1024 H = 65536 + 131072
4=8 + 16 B = 1024 > 2048 I = 131072~ 262144
5 =16 + 32 C = 2048 + 4096

6 =32 » 64 D = 4069 » 8192

Remember the top row matrix entries and bottom-row entries
correspond to single polar grid boxes. For Figure ‘9, a value
of tracer concentration of zero for a grid box is blanked out.
For Figures 10 and 11, values from 32 to 1024 are blanked out
in order to better discern the problems with the schemes. The
average area weighted tracer concentration over the globe is

1000.

For the slopes scheme, the two polar grid boxes do not
use or calculate a horizontal slope; the horizontal concentra-
tion is always uniform. At the initial time, all slopes are

set to zero.



Figure 10 shows the tracer distribution after advecting
the initial state twice around the globe. The upstream scheme
is very diffusive, but it does accurately predi. . the position
of maximum concentration. The second order scheme does not
position the peak as well as the other schemes. The fourth
order scheme shows an unrealistic wave pattern, but the peak
concentration is larger and thus more accurate than it is for
the other schemes. The slopes scheme yields a tracer distribu-

tion which is very smooth and quite realistic in other respects.

Figure 11 shows the tracer distributions after ten revolu-
tions. The upstream scheme has dispersed the tracer almost
to the point of homogeniety. The peak concentration for the
second order scheme lags behind its correct location and the
distribution is smeared over several grid boxes. The fourth
order scheme has a large peak at anﬁaccurate:position; its
main deficiency is the persistent wave pattern. The peak con-
centration for the slopes scheme is less than that of the
fourth order scheme but in othef-respects the slopes scheme

does a good job.



THREE DIMENSIONAL TESTS WITH CARBON MONOXIDE

We saved on a computer tape the winds generated by our
three dimensional climate model. . The model is a sigma coordi-
nate GCM with seven vertical layers and 8° by 10° horizontal
resolution. The winds were averaged over 6 hour intervals.

For these tests there was no mixing by convection.

The tracer model was run off-line with carbon monoxide
as the trace constituent. The model included a realistic
anthropogeﬁic source over industrial areas and an equatorial
plant source, both of which were released into the bottom layer.
There was a photo-chemical destruction rate proportional to the
current concentration of CO and an independent photo-chemical

production rate, both of which affect all layers.

The initial conditions for these tests were generated by
running‘the slopes scheme for 2 years starting from a uniform
CO concentration of 10--7 (kilograms of CO per kilogram of air).
Each of the four schemes were then integrated for five months,

with the final concentrations of layer 4 as shown in Figure 12.

Without going into the details of the computations for
the winds or the sources and sinks for CO, we simply state
that they are realistic for our planet. 1In fact, with the
exception of the upstream scheme, the latitudinal averages of
the CO distributions are comparable to observed distributions.
The CO problem will be discussed in detail in a separate pub-

lication.



As usual the upstream scheme is diffusive, but at least
it is very smooth. The second order and fourth order schemes
have isolated grid boxes with small concentrations and lines
of grid boxes with alternating concentrations. Both of these
features are unrealistic; they are not generated by the
sources nor the winds, but are caused by the schemes them-
selves. The pattern for the slopes scheme is very smooth,
and at the same time the latitudinal averages are comparable

to those of second and fourth order schemes.



CONCLUSION

It is clear from our thrée dimensional tests that if
one is interested in the concentration at a particular location,
the slopes scheme is superior to the other schemes. The
tracer distributions produced by this scheme are smoother
than those of the second order and fourth order schemes,
and yet the slopes scheme is not more diffusive than either of

those other methods.

We should note that for each step, the slopes scheme
requires three times as much computing time as the other
schemeg. However, much of fhis computing time can be re-
couped, because it is possible to take a larger time step

with the slopes scheme than with the second or fourth order

schemes.
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Figure 1. Diagram of the upstream scheme in one dimension.
The solid vertical lines are the interfaces of contiguous grid
boxes i-1, i and i+l. The abscissa is méss of air normalized
by the mass of air in grid box i. The ordinate is tracer concen-
tration. The solid circles are the mean concentrations at the

beginning of a time step with values Ri—l' R. and R The

i i+1°
heavy solid lines show the concentration at which tracer is
moved. & is the mass of air which moves from grid box i-1l into
grid box i during the time step; B is the mass of air which moves
from grid box i into grid box i+l. (In this example, both o and
B are positive). aRi_l is the mass of tracer which moves from
grid box i=-1l into grid box i during the time step; BRi is the
mass of tracer which moves from grid box i into grid box i+l.

The mean concentration of grid box 1 at the end of the time step

shown by the open circle is (Ri + uRi_l - BRi)/(l+u-B).
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Figure 2. Diagram of the second order scheme in one dimen-

sion. For nomenclature refer to Figure 1. a(Ri_l+Ri)/2 is the

mase ~f tracer which moves from grid box i-1 into grid box i
dur the time step; B(Ri+Ri+l)/2 is the mass of tracer which
move:  from grid box i into grid box i+l. The mean concentra-

tion of grid box i at the end of the time step shown by the

open circle is [Ri+a(Ri l+Ri)/2—8(Ri+Ri+l)/2]/(l+a—B).
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Figure 3. Diagram of the slopes scheme in one dimension.
For nomenclature refer to Figure 1. The heavy solid lines
indicate the linear distribution of concentration of three
grid boxes .at the bgginning of a time step. They determine
a piece-wise linear function f(x). The mass of tracer
that moves from grid box i-1l-into grid box i during the time
step is determined by a trapezoid; the bases are the vertical
lines at -%-o and -%, one end is the x-axis, the other end is
a heavy solid line. The mass of tracer that moves
from i into i+l is also a trapezoid. The heavy dashed line
segment is the least square fit line for the function f£(x) in
the interval (~%~a, %-B). It determines the linear distribu-
tion of grid box i at the end of the time step. By virtue
of the least square fit, the center point of the dashed seg-
ment coincides with the mean concentration of grid box i

at the end of the time step. It is shown by the open circle.
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Figure 5. Distribution after 5 revolutions for the one
dimensicnal model. Negative concentrations are prevented by

using our stated limits.
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Figure 6. Distribution after 50 revolutions for the one
dimensional model. Negative concentrations are prevented by

using our stated limits.
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Figure 7. Distribution after 50 revolutions for the one
dimensional model. The schemes do not use our limits. Con-

centrations can be positive or negative.
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INITIAL DISTRIBUTION OF THE 2-D MODEL
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Figure 9, Initial distribution for the two dimensional
tests., Latitude and longitude coordinates of the éphere are
mapped onto a rectangle; poles of the sphere are mapped onto
the top and bottom edges. Numbers on the left indicate the
average concentration over a whole latitude. Except for the
nine grid boxes, the concentrations are zero. The corner box
concentrations of the nine are % the concentration of the
center box. The concentrations of the other four are % the
center concentration. The line shows the path a point would
traverse were it to follow our winds exactly. The circles

indicate the axis of rotation for the winds.
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*UPSTREAM SCHEME AFTER 2 REVOLUTIONS
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4TH ORDER SCHEME AFTER 2 REVOLUTIONS
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Figure 10.
dimensional model.

using our stated limits.
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2ND ORDER SCHEME AFTER 2 REVOLUTIONS
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SLOPES SCH:EME AFTER 2 REVOLUTIONS
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Distribution after 2 revolutions for the two
Negative concentrations are prevented by

Number matrix entries correspond to

concentrations from 0 to 32, blanks from 32 to 1024, and

letters from 1024 upward.

tribution are outlined.

The nine boxes of the initial dis-
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UPSTREAM SCHEME AFTER 18 REVOLUTIONS
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ATH ORDER SCHEME AFTER 12 REVOLUTIONS
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Figure 11.
two dimensional model.

by using our stated limits.
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2ND ORDER SCHEME AFTER 12 REVOLUTIONS
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MAXIMUM VALUE Of 6795 AT (7, 5)

SLOPES SCHEME AFTER 1& REVOLUTIONS
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MAXIMUM VALUE OF 12423 AT (8,15)

Distribution after 10 revolutions for the
Negative concentrations are prevented

Number matrix entries correspond

and

The nine boxes of the initial dis-
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_UPSTREAM SCHEME CO TRACER (18%*-18)
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MAXIMUM VALUE OF 2873 AT (8,29}

ATH CORDER SCHEME CO TRACER (1g**-18)
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MAXTHMUM VALUE OF 5716 AT (3,27)

Figure 12.

our three dimensional tracer model

of CO per kilogram of air).
by using our stated limits.

base 2 scale.
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2ND ORDER SCHEME CO TRACER (1@**-19)
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MAXIMUM VALUE OF 5653 AT (4,12}

SLOPES SCHEME CO TRACER (1g**-1g)
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MAXIMUM VALUE OF 3474 AT (3,26)

Instantaneous CO distribution of layer 4 of

-10 kilograms

Negative concentrations are prevented
Grid box entries use our logarithmic

Isolated grid boxes and lines of grid boxes are

outlined to show the problems with the schemes.
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TABLE I

Frequency of invoking our stated limits

to prevent negative concentrations

At = 1800 seconds At = 3600 seconds

E-W N-S Vert E-W N-S Vert
2;2t$:§2 ;igigiopes 0. 0. 0. -036 0. 0.
Second order limit 1.098 .841 .410 3.532 .946 .413
Fourth order limit 1.298 .986 .626 3.686  1.075 .628
Slopes limit .035 .123 .274 .034 117 .244




